The mechanism for the rapid decomposition of hydrogen peroxide, H_2O_2 , in the presence of iodide ions, is:

$$H_2O_2 + I^- \rightarrow IO^- + H_2O$$
 equation 1
 $H_2O_2 + IO^- \rightarrow I^- + H_2O + O_2$ equation 2

	$H_2O_2 + IO^- \rightarrow I^- + H_2O + O_2$	equation 2	
(a)	Write the overall equation for the reaction and he	nce state the role of the jodide	e ions

(a) Time the overall equation for the reaction and hence state the following found	J.
	(2)

(b) In further experiments, a student calculated the rate constant for the decomposition of hydrogen peroxide at two different temperatures.

Temperature/°C	Rate constant (k) / dm³ mol ⁻¹ s ⁻¹
22.0	4.90 × 10 ⁻⁴
47.0	2.92×10^{-3}

The rate constant (k) is related to the temperature, T, (in Kelvin) by the following equation:

$$\ln k = -\frac{E_a}{R} \times \frac{1}{T} + \text{constant} \qquad R = 8.31 \text{J K}^{-1} \text{mol}^{-1}$$

Use the data in the table to calculate the activation energy, $E_{\rm a}$, for the reaction by a non-graphical method.

Give your answer in kJ mol^{-1} and to an appropriate number of significant figures. Include a sign in your answer.

(4)

(c) If acid conditions are used, the decomposition of hydrogen peroxide proceeds by a different mechanism. The equation for this reaction is:

$$H_2O_2 + 2I^- + 2H^+ \rightarrow I_2 + 2H_2O$$

This reaction is first order with respect to both iodide ions and hydrogen peroxide.

The progress of this reaction is usually followed by adding a fixed quantity of sodium thiosulfate solution and a little starch solution to the reaction mixture, then timing the appearance of a blue-black colour. This is known as a clock reaction.

) Explain the formation of the blue-black colour and why its appearance is delayed.		
	(3	

thern	Ilthough the oxidation of thiosulfate ions $(S_2O_3^{2-})$ by hydrogen peroxide is nodynamically favourable, it does not take place in this clock reaction.	
Sugg	est a reason for this.	.)
	(Total for question = 10 marks	;)
Q 2 .		
Which	substance has the highest standard molar entropy?	
	(1	.)
A	ethane(g)	
В	water(s)	
■ C	water(I)	
D D	water(g)	

This question is about the thermodynamics of the reaction:

$$N_2O_4(g) \rightarrow 2NO_2(g)$$
 $\Delta H = +57.2 \text{ kJ mol}^{-1}$.

Compound	Standard molar entropy at 298 K, S [⊕] / J K ⁻¹ mol ⁻¹	Standard molar enthalpy of formation at 298 K, $\Delta_t H^{\oplus}$ / kJ mol ⁻¹	Colour
NO ₂	+240.0	+33.2	brown
N ₂ O ₄	+304.2		colourless

(a) Calculate the entropy change for the reaction, using the information in the table.

Include a sign and units in your answer.

(2)

(b) Calculate the enthalpy change of formation, $\Delta_f H$, of $N_2 O_4$ (g) at 298 K, using the information in the table and the enthalpy change of the reaction.

Include a sign and units in your answer.

(2)

(c) Calculate the entropy change of the surroundings, $\Delta S_{\text{surroundings}}$, at 298 K.

Give your answer to an appropriate number of significant figures. Include a sign and units in your answer.

(3)

(d) (i) Use your answers to parts (a) and (c) to calculate the total entropy change, ΔS_{total} , for this reaction at 298 K.

(1)

(ii) This reaction can also be written as an equilibrium:

$$N_2O_4(q) = 2NO_2(q)$$

Calculate the temperature at which ΔS_{total} is zero for this equilibrium.

(2)

(e) (i) Write the expression for the equilibrium constant, K_p , for this reaction, including the units, if any.

(2)

equilibrium, 27% of the $N_2O_4(g)$ had dissociated, and the pressure in the container was 4.0 atm
Calculate the value of K_p at 50 °C.
(4
(iii) The total pressure is doubled to 8.0 atm.
State the effect on K_p .
(1)
(iv) The total pressure is doubled to 8.0 atm at constant temperature.
Explain the change in the percentage dissociation of $N_2O_4(g)$ by considering the effect on the partial pressures of $NO_2(g)$ and $N_2O_4(g)$.
(3)
(Total for question = 20 marks)

(ii) In an experiment, 10 mol of $N_2O_4(g)$ was placed in a closed container at 50 °C. At

04.

The element sulfur can exist in two solid, interchangeable, structural forms known as rhombic sulfur and monoclinic sulfur.

$$S(s, rhombic) \implies S(s, monoclinic)$$
 $\Delta S_{total} = -0.307 \, J \, K^{-1} \, mol^{-1}$

The value of ΔS_{total} is for the forward reaction. What can be concluded from this information?

(1)

- A monoclinic sulfur will change quickly into rhombic sulfur
 B rhombic sulfur could change into monoclinic sulfur but nothing can be deduced about the rate
- C there can be no change of structural form as they are both solids
- **D** monoclinic sulfur could change into rhombic sulfur but nothing can be deduced about the rate

(Total for question = 1 mark)